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Abstract: The primary cause of tooth loss in the industrialized world is periodontitis, a bacterial
anaerobic infection whose pathogenesis is characterized by composite immune response. At present,
the diagnose of periodontitis is made by a complete status check of the patient’s periodontal health;
full-mouth plaque score, full-mouth bleeding score, probing depth, clinical attachment level, bleeding
on probing, recessions, mobility, and migration are evaluated in order to provides a clear picture
of the periodontal conditions of a single patient. Chair-side diagnostic tests based on whole saliva
could be routinely used by periodontists for a very early diagnosis of periodontitis, monitoring,
prognosis, and management of periodontal patients by biomarker detection, whose diagnostic
validity is related to sensitivity and specificity. Recent paper reviews and meta-analyses have focused
on five promising host derived biomarkers as candidate for early diagnosis of periodontitis: MMP-8
(Metalloproteinase-8), MIP-1α (Macrophage inflammatory protein-1 alpha), IL-1 β (Interleukin-1
beta), IL-6 (Interleukin-6), and HB (Hemoglobin), and their combinations. Chair-side Lab-on-a-chip
(LOC) technology may soon become an important part of efforts to detect such biomarkers in saliva
medium to improve worldwide periodontal health in developed nations as well as in underserved
communities and poor countries. Their applications in preventive and predictive medicine is now
fundamental, and is aimed at the early detection of risk factors or the presence or evolution of the
disease, and in personalized medicine, which aims to identify tailor-made treatments for individual
patients. The aim of the present paper is to be informative about host derived periodontal biomarkers
and, in particular, we intend to report information about the most important immune response
derived biomarkers and Hemoglobin as candidates to be routinely utilized in order to obtain a
chair-side early diagnosis of periodontal disease.

Keywords: predictive periodontology; lab-on-a-chip; host-derived diagnostic markers; salivary
biomarkers; periodontitis

1. Introduction

An amazing evolution in dental research has been recorded in the last few years, re-
vealing the intimate mechanisms at the base of Periodontitis, a genetically linked pathology
determined by Gram negative anaerobic infection and characterized by composite immune
reactions as a response to bacterial load. At the present time, periodontal diagnosis is made
by performing a complete clinical status check of the patient’s periodontal health (full-
mouth plaque score, full-mouth bleeding score, probing depth, clinical attachment level,
bleeding on probing, recessions, mobility, migration) supported by digital photographs
and periapical X-rays. At present, the periodontal defense strategy is almost totally reactive
because periodontists only make a start when periodontal infection has already begun,
determining the damage of periodontal tissues [1].
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The unique predictive test used by periodontists for routinely checking the stability or
progression of periodontitis is “Bleeding on Probing, (BoP)” [2], recorded by inserting a
periodonatal probe at the bottom of the gingival sulcus or periodontal pocket (Figure 1).
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Figure 1. Bleeding on Probing (BoP): Blood coming out during probing is at this time the unique
predictive test used by periodontists.

Blood coming out from the bottom of the pocket can be recorded during probing: BoP
that is repeatedly positive (BoP+) is a predictor of future loss of attachment (activity phase)
in 30% of cases (positive predictive value); meanwhile, BoP repeatedly negative (BoP−) is a
predictor of periodontal health in 98% of cases (negative predictive value) [3–5]. In addition,
a functional diagram to evaluate the patient’s risk of recurrence of periodontitis (“Spider’s
web”) has been proposed [6]. At this time, the instruments that periodontist have to make
diagnosis of periodontitis are mainly related to a “periodontal reactive approach” because,
at this time, we can use very few “periodontal predictive“ instruments.

The purpose of a “futuristic” periodontal diagnosis in the near future will be to
diagnose periodontal disease before it comes clinically detectable in order to early stop
its progression by the use of biomarkers. Biomarkers are biological indicators with high
prognostic and predictive value that can be related to the onset or development of a
pathology. They must be capable of being measured accurately and quickly and must
have a high prognostic or predictive value. In short, they must be able to predict the
presence of a disease or its progression, if it is a disease marker, or to give indications on
the most appropriate type of drug and response, if it is a treatment response marker. Their
applications in preventive and predictive medicine is now fundamental, and is aimed at
the early detection of risk factors or the presence or evolution of the disease, and they can
also be applied in personalized medicine, which aims to identify tailor-made treatments
for individual patients. The aim of the present paper is to be informative to clinicians who
are not familiar with the details of periodontal biomarkers; in particular, we intend to
report information about the most important host derived biomarkers and among them
the immune response derived biomarkers and Hemoglobin as candidates that can be
routinely utilized in order to obtain a chair-side early diagnosis of periodontal disease. The
most important therapeutic topic is that, by the use of periodontal biomarkers, we could
“intercept” periodontal disease at a very early stage, when periodontal tissues lesions are
not yet clinically detectable and, as a consequence, we can treat the disease early in order
to stop it before periodontal lesions are established.

2. Immune Response in Periodontitis

Worldwide periodontists have to make a huge cultural effort in changing the actual
“reactive” therapeutic point of view into a futuristic “predictive” one. On account of
this, it appears very important (i) to identify a periodontal initial lesion when it is not
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yet clinically detectable and (ii) to intercept the so called “active phase” of periodontitis.
In order to get this result, clinicians need hi-tech diagnostic tools in order to detect the
specific biomarkers that are released during the early phases of immune response. The
host-microbial equilibrium constitutes the situation for clinically healthy periodontal tissue;
when plaque bacterial load occurs it determines an important immune response, which
releases many substances in periodontal tissues, and some of them could be eligibly as
biomarkers for the early diagnosis of Periodontitis.

The most important cells involved in pathogenesis of periodontal diseases are Poly-
morphonuclear Leukocytes (PMN), Macrophages (Mø), and Osteoclasts [1]. Their functions
in periodontal immune response are briefly described below.

In this brief description of the pathogenesis of periodontitis, we focused on the
immunological mechanisms and related cells leading to the releasing of molecules eligible
as biomarker candidates for an early diagnosis of periodontitis.

2.1. Polymorphonuclear Leukocytes (PMN) Activation

PMN leukocytes, representing the first line of defense of periodontal tissues, can
cause tissue damage as a result of their accumulation in gingival epithelial tissues. Further
tissue damage can be caused by a variety of enzymes and oxygen metabolites that are
released by PMN during the immune reaction. The result of these activities is that the junc-
tional epithelium becomes filled with ulcers, allowing the passage of bacteria underneath
connective tissue.

Neutrophil collagenase, also known as matrix metalloproteinase-8 (MMP-8) is one
of the most representative enzyme involved in the breakdown of the extracellular matrix
in Periodontitis. The primary function of MMP-8 is the degradation of type I, II, and III
collagens, determining periodontal attachment loss.

2.2. Macrophage (Mø) Activation

The second line of defense is mostly represented by macrophages. They play a decisive
role in controlling bacterial diffusion in the connective tissue and represent an important
source of enzymes, cytokines, and inflammatory mediators such as Interleukin-1 β (IL-1
β), Tumor Necrosis Factor-α (TNF-α), Prostaglandin E2 (PGE2), Transforming Growth
Factor-β (TGF-β), and Macrophage inflammatory protein-1 alpha (MIP-1α/CCL3). The
primary functions of these molecules are reported below:

• IL-1 β is released by LPS-activated macrophages, lymphocytes, and fibroblasts. It
stimulates Mø and fibroblasts to secrete PGE2 and causes osteoclastic differentiation
and activation [7];

• TNF-α is principally secreted by LPS-stimulated macrophages and lymphocytes and
causes osteoclastic differentiation and activation [8];

• PGE2 causes vasodilatation, vasopermeability, and resorption of the alveolar bone;
• IL-1 β, TNF-α and PGE2 stimulate fibroblasts and Mø to release Metalloproteinases

(MMPs), urokinase plasminogen activator (u-PA), tissue inhibitor of metallopro-
teinases, PGE2, TGF-β, and interleukin-1 receptor antagonist [9];

• MIP-1α belongs to the family of chemotactic cytokines [10]. It is secreted by macrophages
and performs several functions, such as recruiting inflammatory cells, wound healing,
inhibition of stem cells, and activation of bone resorption cells, and it directly induces
bone destruction. Cells that secrete MIP-1α are increased at sites of inflammation
and bone resorption. MIP-1α plays an important role in the pathogenesis of various
inflammatory diseases and conditions that exhibit bone resorption, such as periodon-
titis. Biological fluids from patients with these diseases exhibit elevated levels of
MIP-1α [11].

2.3. Osteoclast Activation

Many substances (PGE2, IL-1, IL-6, TNF-α) secreted by Mø, fibroblasts, plasma cells,
and T lymphocytes are involved in osteoclastic activation. The receptor activator of NF-
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kB ligand (RANKL) promotes osteoclastic differentiation and the inhibition of osteoclast
apoptosis. Under physiological conditions, RANKL produced by osteoblasts binds to
RANK on the surface of osteoclast precursors. RANKL is up-regulated by Parathyroid
hormone (PTH), and IL-1. Osteoprotegerin (OPG) is produced by fibroblasts and constitute
a false target for RANK, inhibiting, as a consequence, the osteoclastic activation [12,13]
(Figure 2).
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3. Immune Response Host Delivered Salivary Products as Biomarkers for Early
Periodontal Diagnosis

The word “biomarker” refers to substances in biologic samples that may predict a
disease state in a single patient. Nevertheless, the word has evolved to include genomic
or proteomic analyses that could also predict “a response to a drug (efficacy, toxicity, or
pharmacokinetics) or indicate an underlying physiologic mechanism” [14].

Many dental associations, such as the American Dental Association (ADA), recognize
the importance of scientific research on oral fluid diagnostics [15]. In the near future, the
use of a chair-side lab-on-a-chip (LOC) to detect biomarkers for several dental disorders
will be desirable in routine dentistry. Industry and research should walk side by side to
provide to operators, in a short time, LOC in order to diagnose periodontal disease and
other oral diseases at early stages, dealing with extremely small whole saliva volumes in
order to detect biomarkers. Oral fluid (whole saliva) includes glandular-duct saliva and
gingival crevicular fluid in which many substances derived by the immune response may
be detected [16]. Recently, several authors have affirmed that host delivered biomarkers
could play a crucial role in the early diagnosis of periodontitis [17,18]. In the last few years,
several systematic reviews and meta-analyses have focused on the analysis of host derived
biomarkers detected in saliva in order to identify among them the most eligible ones for
diagnosis of periodontitis [19,20]. The diagnostic validity of a single biomarker is related
to its sensitivity and specificity. “Sensitivity is the ability to detect a disease in patients in
whom the disease is truly present (i.e., a true positive), and specificity is the ability to rule
out the disease in patients in whom the disease is truly absent (i.e., a true negative)” [14].
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Over the last decade, the entire human salivary proteome has been reported on,
revealing that 1166 proteins are present in human saliva [21,22], and several have been
focused as biomarkers for periodontal diseases [23].

Among them, four clusters of markers released during the immune response may be
eligible as biomarkers for periodontitis: (1) host-derived enzymes; (2) tissue breakdown
products; (3) host response modifiers [24]; (4) Cytokines.

3.1. Host-Derived Enzyme

These are released during the immune response, principally by immunocompetent
cells elicited by bacterial load.

3.1.1. Alkaline Phosphatase

This is produced by neutrophils, fibroblasts, osteoblasts, osteoclasts, and several
bacteria. Its amount appears higher in the active sites than in the inactive ones in the
course of periodontitis. Its elevated level in Gingival Crevicular Fluid seems to express
early attachment loss [25].

3.1.2. Beta-Glucuronidase

This is a lysosomal enzyme whose amount appears higher in active vs. inactive
ones [25]. Lamster et al. showed a predictive value of a high level of Beta-glucuronidase in
relation to clinical attachment loss [26].

3.1.3. Cathepsin B

Cathepsin B is mainly released by macrophages in activity sites; meanwhile, it appears
reduced after periodontal treatment [27–30].

3.1.4. Metalloproteinase-8 (MMP-8, Collagenase-2)

MMP-8 appears to be the most promising host derived enzyme as a biomarker for the
progression of periodontitis vs. stable periodontitis [31,32].

3.1.5. Metalloproteinase-9 (MMP-9, Gelatinase)

MMP-9 appears elevated in patients with recurrent attachment loss. Its levels decrease
significantly following periodontal therapy [33].

3.1.6. Dipeptidyl Peptidases II and IV

These are principally secreted by neutrophils, lymphocytes, macrophages, and fibrob-
lasts.

Their main function lies in the degradation of periodontal collagen tissue. In sites
with attachment loss, very high levels of both enzymes were reported [34].

3.1.7. Metalloproteinase-12 (MMP-12, Elastase)

This is released from the first line of immune defense, which are neutrophils and
macrophages. Higher elastase levels are demonstrated in active sites compared to inactive
ones [35–37].

3.2. Tissue Breakdown Products

These are released subsequent to the destruction of periodontal tissues, determined
directly by bacteria toxins/enzymes, or as a collateral effect of the immune response
following bacteria invasion.

3.2.1. Pyridinoline Cross-Linked Carboxyterminal Telopeptide of Type I Collagen (1-CTP)

This represents a molecule derived from collagen tissue degradation, whose detection
in gingival crevicular fluid is a biomarker of periodontal disease [38].
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3.2.2. Chondroitin-4-Sulphate (C-4-S)

This is a bone-specific glycosaminoglycan detected in untreated chronic periodontitis
sites; a statistically significant correlation between the gingival crevicular fluid (GCF) level
of C-4-S, PPD, and CAL has been reported [39].

3.2.3. Hemoglobin (HB)

Hemoglobin is a protein localized in red blood cells transporting oxygen to tissues and
carbon dioxide from tissues to lungs. Hb can be revealed in Gingival Crevicular Fluid using
salivary occult blood tests (SOBTs). SOBTs have been evaluated as a screening method for
periodontal status in order to discriminate subjects with a poor periodontal status [40–51].

3.3. Host Response Modifiers

Receptor activaton of the nuclear factor-Kb (RANK)/Osteoprotegerin (OPG)/Receptor
activator of nuclear factor-Kb ligand (RANKL) system can be detected in the gingival tissue
and whole saliva.

RANK—Expressed by osteoclasts and their precursors—Activated by RANK Lig-
and binding.

OPG protein is secreted by osteoblasts/bone lining cells—Natural inhibitor of RANK
Ligand—Blocks RANK Ligand signaling to balance bone remodeling.

RANKL is secreted by osteoblasts, fibroblasts, bone marrow stromal cells, and acti-
vated T and B cells [52].

RANKL binds to RANK on the surface of preosteoclasts, activating them in osteoclasts.
RANKL is up-regulated by OPG. RANKL is increased whereas OPG is decreased in
periodontitis compared to healthy gingiva or gingivitis.

When OPG binds to RANKL, the signal between marrow stromal cells and osteo-
clast precursors is inhibited; this situation determines a decrease of osteoclastogenesis
(Figure 1) [53–55]. The balanced regulation of the RANKL-osteoprotegerin expression sys-
tem can determine health from disease, as demonstrated in a number of bone destructive
diseases, including bacterial arthritis, rheumatoid arthritis [56], periodontitis [57], and,
lately, peri-implantitis [58,59].

3.4. Cytokines
3.4.1. Macrophage Inflammatory Protein-1α (MIP-1α)

MIP-1α is a chemotactic cytokine (chemokine). Monocytes, macrophages, activated
eosinophils, and fibroblasts are the sources of these proteins [10,60]. The main effect of
MIP-1α mainly consists of chemotaxis and transendothelial migration, affecting monocytes,
T lymphocytes, dendritic cells, NK cells, and platelets [60].

3.4.2. Interleukin-1 β (IL-1 β)

IL-1 β is a pro-inflamatory cytokine expressed particularly by mononuclear phago-
cytic lineage such as macrophage, NK cells, monocytes, and neutrophils [61,62], but it is
also produced by endothelial cells, keratinocytes, synovial cells, osteoblasts, glial cells,
and numerous other cells. The main effects of Il-1 β are (i) Endothelial cells activation,
(ii) Neutrophils diapedesis induction, and (iii) Enhancement of lymphocytes (T and B)
cytokines synthesis [63,64]. One of the most important biologic activities of IL-1 is as a
lymphocyte activating factor. IL-1 enhances the production of IL-2 T lymphocyte–derived,
which determines the increase of B-cellproliferation and in consequent increasing immuno-
globulin synthesis. Interaction of IL-1 with the central nervous system is responsible for
producing fever. Moreover, IL-1 stimulates bone resorption and collagen deposition [65].

3.4.3. Interleukin-6 (IL-6)

This is produced by osteoblastic cells, gingival fibroblasts, gingival lymphocytes, and
macrophages stimulated by IL1. It appears as a fundamental factor in the regulation of
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bone remodeling because it acts by increasing bone resorption determined by osteoclasts
activated by IL1 [66].

3.4.4. Tumour Necrosis Factor-α (TNF-α)

TNFα stimulates the proliferation and differentiation of osteoclasts precursors and
also acts on mature osteoclasts, activating them [67,68].

3.4.5. Tumour Necrosis Factor-β or Lymphotoxin (TNF-β or LT)

This performs many biological activities similar to those of TNF-α, stimulating bone
resorption; moreover, it has a negative effect on bone formation, as it inhibits both collagen
synthesis and non-collagenic protein synthesis by osteoblasts [67–69].

3.4.6. Interferon-γ (INF-γ)

IFN-γ is produced by natural killer (NK) cells as a part of the innate immune response,
and by CD4 (Th1, T helper cells) and CD8 cells (Tc, cytotoxic T lymphocyte) as part of
specific immune response [70]. IFN-γ is also produced by non-cytotoxic innate lymphoid
cells (ILC), a family of immune cells first discovered in the early 2010s [71,72]. INF-γ is
a central factor in the regulation of bone resorption because it can function as a pro- or
antiresorptive cytokine [72–75], but the reason why IFN-γ has variable effects in bone
is unknown.

4. The Most Promising Host Derived Biomarkers as Candidates for Early Diagnosis of
Periodontitis and Their Combination

At present, well-studied molecules collected in oral fluid (whole saliva) associated with
host response factors have been proposed as diagnostic biomarkers for periodontitis [16].

Over 65 components detected in oral fluid have been examined as possible markers
for the progression of periodontitis (for a complete review, see [76]).

Among them, five promising biomarkers have been identified as eligible candidates
for the diagnosis of periodontitis, and their combination has been evaluated in order to
enhance sensibility and specificity of the molecular analysis.

4.1. Most Promise Biomarkers

Recent systematic reviews and meta-analyses [19,20,77] have identified five promis-
ing host derived biomarkers as good candidates to be elected for the early diagnosis
of periodontitis:

• Metalloproteinase-8 (MMP8): An enzyme released by PMN during immune reac-
tion [78]. Salivary and systemic levels of MMP8 appear to be valuable biomarkers for
both acute coronary syndrome (ACS) and periodontitis [79,80]. Recent reports have
shown that local and systemic levels of aMMP-8 can reflect the grading and staging
of periodontitis [81,82]. In terms of sensitivity, Arias-Bujanda N et al. [19] showed a
value of 72.5%, according to de Lima et al. [83]. Other authors have reported MMP-8
as one of the strongest markers for tissue destruction, with sensitivity ranging from
65% to 87%, and specificity ranged from 48% to 87% [84,85];

• Macrophage inflammatory protein-1 alpha (MIP-1α): Secreted by macrophages in-
creased at the sites of periodontal inflammation and bone resorption [86]. Its increased
level can reveal the hidden presence of subclinical inflammation in periodontal clini-
cally healthy sites [87], and it can also discriminate periodontitis in type II diabetics
(T2DM) patients. Non-surgical periodontal treatment can affect the salivary level of
MIP-1α [88]. It appears associated with periodontal bone remodeling, showing high
sensitivity and specificity of 95% and 97%, respectively [89];

• Interleukin-1beta (IL-1β): Released by LPS-activated macrophages (Mø), lympho-
cytes, and fibroblasts. It stimulates Mø and fibroblasts to secrete PGE2, determining
bone destruction [90] and fibroblasts, and Mø releases Metalloproteinases (MMPs),
determining connective tissue destruction. Genetic variations of IL-1β + 3954 appear



J. Clin. Med. 2021, 10, 1488 8 of 14

to be associated with increased risk of periodontitis in Koreans (Detection of associ-
ation between periodontitis and polymorphisms of IL-1beta + 3954 and TNF-alpha
−863 in the Korean population after controlling for confounding risk factors) [91]. For
IL-1β, the sensitivity ranged from 54% to 88% and specificity ranged from 52% to
100% across five studies [31,84,85,92,93]. Clinical parameters showing periodontitis
such as gingival index (GI), probing depth (PD), and GCF flow were significantly
correlated with gingival crevicular fluid (GCF) and tissue IL-1beta activity [94];

Interleukin-6 (IL-6): A pro-inflammatory cytokine secreted by macrophages in re-
sponse to specific bacteria and by osteoblaststs to stimulate osteoclastic activity.

• The levels of salivary IL-6 appear to be increased in patients affected by Chronic Peri-
odontitis as compared to healthy controls [95]. Interleukin-6 572C/G and RS1800796
polymorphisms appear as genetic risk factors for periodontitis patients in the Asian
population [96,97]. Its sensitivity ranged from 52% to 80%, and specificity ranged
from 48% to 87% [31,84,85,93];

• Hemoglobin(HB): This has a sensitivity value of 72% and a specificity value of
75% [19]. SOBTs may offer a simple screening method for periodontal status when
clinical periodontal examination is not possible, although this test it is not suffi-
ciently specific to be a suitable surrogate for a periodontal clinical examination [48].
Mäkinen et al. [49] reported the presence of hemoglobin (Hb), detected in the GCF
of periodontal disease sites. In addition, Hanioka et al. [50] observed the existence of
Hb in the GCF of mild periodontal pockets. They speculated that invisible bleeding
has previously occurred in a pocket with early periodontitis in spite of the negative
finding by BOP inspection (BOP–). This hypothesis was supported by other studies,
which suggested that the detection of Hb derived from microbleeding in gingival sulci
may serve as an index for preclinical diagnosis [51,98] (Table 1).

Table 1. Early diagnosis of periodontitis: Sensitivity and Specificity of the most promising host derived biomarkers.

Releasing Cells Biomarker Sensitivity % Specificity %

Polymorphonuclear
Leukocytes MMP8 (Metalloproteinase-8) 72% [19,79]

65.87% [80,81] 48–87% [80,81]

Macrophage MIP-1α (Macrophage
inflammatory protein-1 alpha): 95% [82] 97% [82]

Macrophage
Lymphocytes

Fibroblasts
IL-1 β (Interleukin-1 β) 54–88% [31,80,81,83,84]. 52–100% [31,80,81,83,84]

Macrophages
Osteoblaststs IL-6 (Interleukin-6) 52–80% [31,80,81,84] 48–87% [31,80,81,84]

Red Cells Hemoglobin (HB) 72% [19] 75% [19]

Recently, other proteins have been proposed as promising biomarker of periodontitis:

• Salivary neuropeptides (vasoactive intestinal peptide, VIP and neuropeptide Y
NPY) showed significantly higher levels in the saliva of patients with periodontitis and
were correlated with bleeding on probing scores in patients with periodontitis [99];

• Oxidative stress-related biomarkers (OS) in saliva and gingival crevicular fluid as-
sociated with chronic periodontitis has been reported in a systematic review and
meta-analysis. A direct link between CP and OS-related bio- marker levels in the local
site has been suggested by a significant decrease of total antioxidant capacity and
a significant increase of malondialdehyde (MDA), nitric oxide, total oxidant status
(TOS), and 8-hydroxy-de-oxyguanosine levels in the saliva of CP patients [100];

• MicroRNAs (MiRNA-146a and miRNA155) provide consistent, non-invasive, diag-
nostic and prognostic biomarkers that can be used to monitor periodontal health
status in saliva among diabetic and non-diabetic patients [101];
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• Salivary oxidative stress biomarkers and advanced glycation end products were
investigated in a cross-sectional study in patients affected by periodontitis and in
periodontally healthy patients with type 2 diabetes and corresponding systemically
healthy controls. Salivary 8-hydroxy-2’-deoxyguanosine (8-OHdG) alone, or in combi-
nation with 4-hydroxy-2-nonenal (4-HNE), advanced glycation end products (AGE)
and AGE receptor (RAGE) for diabetics, and salivary 8-OHdG alone, or in combina-
tion with malondialdehyde (MDA) and high sensitivity C-reactive protein (hsCRP)
for systemically healthy persons, could potentially serve as non-invasive screening
marker(s) of periodontitis [102];

• Soluble Neuropilin-1 (sNRP-1) is a glycoprotein with angiogenic and immune regulatory
functions positively related to periodontitis and could probably be involved in the pro-
inflammatory mechanisms observed in periodontal clinical tissue inflammation [103].

4.2. Combination of Biomarkers for Earliest Diagnosis of Periodontitis

Many investigators are interested in combining biomarkers to forecast a binary out-
come or detect underlying disease [104]. The combination of some of the previously
described biomarkers appear to show a very high sensitivity and specificity in order to
diagnose periodontitis.

Distinction between gingivitis and periodontitis groups has been analyzed by only
one study, which reported sensitivity of 81% and specificity of 71% for the combination
of IL-6 and MIP-1α; meanwhile, a combination of IL-1β, IL-6, MMP-8, and MIP-1α was
found to have a good sensitivity of 78% and specificity of 78% [84].

The combination of IL-6 and MMP-8 showed, for periodontitis vs. healthy gingiva, a
high sensitivity of 94% and a specificity of 100% [85].

Diagnostic precision was at the maximum for the combination of IL-1β, IL-6, and
MMP-8, with sensitivity and specificity range of 78–94% and 77–97%, respectively [84,85].

An outstanding predictive value of 98% was reported for paired combinatory analysis
of IL-1β and MMP-8 and IL-1β and IL-6, as well as the triple combination of IL-6, MMP-
8, and IL-1β. Finally, an ideal positive predictive value of 100 was calculated for the
combination of IL-6 and MMP-8 [85].

5. Conclusions

Oral fluid is the mirror of periodontal health. Unfortunately, its importance in the
diagnosis of periodontitis as well as of other oral diseases is still underestimated. We think
that it is important to underline that, today, dentistry does not appear to be in line with
the times in terms of managing biomarkers. The current deficit in the development of
new diagnostic strategies is a cultural deficit for which a global strategy is needed in order
to favor a modern cultural approach to the diagnosis of oral diseases. In order to fill the
cultural gap, it is necessary to update the scientific knowledge of dental operators through
a global cultural strategy aimed to involve:

(i) Universities, in teaching predictive dentistry (e.g., the creation of a specific subject in
degree courses in dentistry, post-graduate courses, and PhD courses);

(ii) Dental researchers, in the publication of scientific papers on biomarkers as diagnostic
tools for oral diseases;

(iii) Industries, which should provide chair-side LOC to be used by dental operators.

Advances in microfluidics technology are revolutionizing molecular biology proce-
dures for enzymatic analysis, DNA analysis, and proteomics [105]. Digital microfluidics
appears promising for future application to diagnose periodontal diseases by the use of
a chair-side Lab-on-a-chip technology able to detect the periodontal biomarkers released
during the immune response [106–108]. We have to go a long way if we are to change a tra-
ditional “reactive” approach to a “predictive” one (Figure 3), but the pathway has already
been outlined; it is “time for new guidelines in advanced healthcare” in dentistry [109].
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